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Molecular-dynamics simulations of a model alkali metal under �100� uniaxial load reveal a fundamental
understanding of the atomistic kinematics and dynamics of the stress induced bcc→hcp lattice structural
transition. The transformation itself is “Burgers-type,” with opposing shearing of alternate �110� planes; how-
ever, shearing occurs on the �110� planes of zero shear stress. The results, including the singular nature of the
lattice-parameter variations at the inception of the transition, are analyzed and explained within the framework
of crystal elastic stability theory.
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I. INTRODUCTION

Numerous metals, such as the alkali metals and iron, are
known to undergo transformations among several crystalline
structures including face-centered cubic �fcc�, body-centered
cubic �bcc�, and hexagonal close-packed �hcp�, depending on
temperature and pressure.1 The characteristics of bcc→hcp
transitions, in general, have long been active topics of in-
quiry; see, e.g., Refs. 2–11 and the citations therein. In the
generally accepted mechanism for the bcc→hcp transition,

the �11̄0� planes of the parent bcc crystal undergo shearing,

in alternate �011� and �01̄1̄� directions, wherein the sheared

�11̄0� bcc planes become the �0001� planes of the new hcp
crystal. This shearing mechanism for the bcc→hcp transfor-
mation, apparently first proposed by Burgers,11 is based on
analogous hexagonal geometry between the �110� planes in
bcc crystals and the �0001� planes in hcp crystals.

In this paper, we present the results of isostress molecular-
dynamics �MD� simulations of the Burgers bcc→hcp transi-
tion in a model alkali metal under a strict �100� uniaxial
compressive load. Under this mode of loading, both intuition
and classical plasticity theory imply that the specific �110�
planes that undergo slip or shear during the transition should
be the �110� planes on which the �011� shear stress � is a
maximum. Thus, it is worth noting that the specific family of
�011� planes that undergo slip during the transformation in-
stead consists of the �110� planes on which there exists no
shear stress. Our MD simulations show that this counterin-
tuitive behavior results directly from the existence of an in-
variant branching point12 that lies on the �100� compressive
loading path of bcc crystals,13,14 and therefore, this behavior
may be explained and understood simply from classical elas-
tic stability and bifurcation theory, as put forth by Hill and
Milstein.12 Additionally, the dynamical mechanism for the
inhomogeneous bcc→hcp transition observed in the present
work is found to exhibit remarkable similarities to the shear-
ing mechanism suggested by Milstein et al.,13 for homoge-
neous bcc→ fcc transitions in the alkali metals under �100�
uniaxial loading, including the singular nature of the lattice-
parameter variations at the inception of destabilization of the
bcc phase.13–15

The paper is structured as follows. Section II outlines the
principles of elastic stability analysis of cubic crystals under

�100� uniaxial stress and the characteristics of bifurcation at
the termini of stability ranges. A concise account of the in-
teratomic potentials, MD simulation techniques, and meth-
ods of analysis of the simulation results is given in Sec. III.
Our simulation results are presented in Sec. IV and are dis-
cussed in the context of the theoretical elastic stability and
bifurcation analysis, as well as of previously published
lattice-statics �LS� results. Finally, the main conclusions of
our study are summarized in Sec. V.

II. THEORY

Homogeneous strains of a crystal lattice may be described
by a set of “generalized coordinates” qr �r=1, . . . ,6� that
specify the geometry of a deformed crystalline cell. Work-
conjugate “generalized forces” pr in a configuration qr may
be defined via the differential form

dE = prdqr �1�

�summation convention, r=1, . . . ,6�, and “generalized
moduli” crs via

dpr = crsdqs, �2�

with

crs = �2E/��qr � qs� , �3�

where E is the elastic strain energy per unit reference volume
�e.g., per unit cell of the crystal�. The incremental change in
strain energy �E resulting from incremental changes in the
cell’s geometry �qr is then

�E = pr�qr + �1/2�crs�qr�qs �4�

to second order in the qr. From a historical perspective, vari-
ous choices of generalized coordinates qr have been em-
ployed in the literature leading to diverse sets of generalized
forces and elastic moduli. While this diversity is inconse-
quential in the absence of an applied load, for an elastically
deformed crystal under generalized forces pr, convexity of
internal energy �i.e., the condition that crs �qr�qs�0, for
arbitrary �qr when not all �qr=0, usually called the Born-
stability criterion� is not coordinate invariant, in general.12,14

Consider the crystal to be in a current, elastically stable
and homogeneously deformed state qr under generalized
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forces pr and let the crystalline cell undergo any small arbi-
trary additional deformation of the chosen set qr specified by
the set �qr. Elastic stability of the crystal then signifies that
the combined incremental potential energy of the crystal and
its external loading �i.e., the sum of the incremental elastic
strain energy �E and external work �W� is positive for all
possible arbitrary incremental variations �qr. Therefore, the
increment �W of external work must also be specified objec-
tively to second order in the qr, i.e.,

�W = pr�qr + �1/2�krs�qr�qs, �5�

where the coefficients krs depend on the test configuration
and the choice of variables qr. The algebraic expression of
the stability criterion, �E−�W�0, then becomes

�crs − krs��qr�qs � 0 �6�

for arbitrary �qr when not all �qr=0. The inequality �6� is, of
course, coordinate invariant, and it reduces to the Born cri-
terion in the absence of applied loads, i.e., when all krs=0.

Bifurcation of an initially stable crystal may occur on a
primary path under a prescribed mode of loading at the
“critical stage” where the quadratic form of relation �6� first
passes from positive definite to semidefinite, i.e., at the in-
stant at which the stability criterion �6� is first violated. At
this stage, the homogeneous equations,

�pr − krs�qr = 0, �7�

must have at least one eigensolution that causes the quadratic
form to vanish; these equations are also necessarily coordi-
nate invariant.12

Under �100� loading of an initially cubic crystal, p1�0 in
general, with all other pr=0; the crystal becomes tetragonal
on the primary path �q1�q2=q3; cell edges remain perpen-
dicular� with six independent moduli crs, viz. c11, c12=c13,
c22=c33, c23, c44, and c55=c66 �all other crs=0 and crs=csr�.
The differential relations �Eq. �2�� that govern an arbitrary
differential disturbance, possibly taking the crystal from the
primary tetragonal path, are then

dp1 = c11dq1 + c12�dq2 + dq3� ,

dp2 = c12dq1 + c22dq2 + c23dq3,

and

dp3 = c12dq1 + c23dq2 + c22dq3, �8�

with

dp4 = c44dq4, dp5 = c55dq5, dp6 = c55dq6. �9�

For example, if the load was to remain uniaxial and coaxial
with the �100� axis under the differential disturbance �i.e., p1
and dp1�0, in general, all other pr and dpr=0�, the general
solution to Eqs. �8� and �9� follows the primary tetragonal
path �dq2=dq3� and gives the coordinate increments
�dq1 , . . . ,dq6� on the primary tetragonal path as

�dq1,dq2,dq3,dq4,dq5,dq6�

= �c22 + c23,− c12,− c12,0,0,0�

��c11�c22 + c23� − 2c12
2 �−1dp1. �10�

Of particular interest for studies of crystal instability and
bifurcation under �100� loading are the two special cases
wherein the crystalline cell may change its dimensions or
shape differentially �i.e., not all dqr=0� while the �100� gen-
eralized force p1 remains constant and uniaxial �i.e., all dpr
=0, p1�0, and all other pr=0�. One such case occurs when
p1 becomes stationary at an extremum on the primary path
�i.e., where p1 undergoes a local or global maximum or mini-
mum on the primary path�; from Eq. �10�, this condition is
seen to occur coincident with c11�c22+c23�−2c12

2 =0, al-
though the precise location of this condition on the primary
path depends on the specific designations of the pr and crs,
which in turn depend on the choice of generalized variables
qr. For example, if q1 is the axial stretch �1 �i.e., the current
length of a fiber coincident with the �100� axis divided by its
length in the unstressed cubic state�, p1 varies as the uniaxial
load F1 in the �100� direction, and thus, it becomes stationary
coincident with dF1=0 at an extremum; by contrast, if the qr
are the Green strain variables, p1 becomes stationary on the
primary path at an extremum of the Green’s conjugate stress,
i.e., where d�F1 /�1�=0. As a consequence, in �100� tension,
the maximum value in the Green conjugate stress is reached
before the maximum load, while in compression, an extre-
mum of the Green conjugate stress would be preceded by the
load extremum. Thus, the location of an extremum of the
generalized force is not coordinate invariant.

The second case of particular interest for an initially cubic
crystal under �100� uniaxial load occurs at the “invariant
c22=c23 eigenstate,” i.e., substitution of c22=c23 into Eqs. �8�
and �9� yields the secondary solution that admits branching
under the conditions

dq1 = 0, dq2 = − dq3, dq4 = dq5 = dq6 = 0, �11�

with

dpr = 0 �r = 1, . . . ,6� . �12�

Thus, the uniform eigendeformation at the branching point
takes the crystal structure from the primary tetragonal path to
a secondary orthorhombic branch �on which q1�q2�q3,
with the cell edges remaining orthogonal, according to Eq.
�11��, and with the load remaining dead �according to Eq.
�12�� during the differential eigendeformation. On the sec-
ondary path, at the branching point, the generalized Poisson
ratios dq2 /dq1 and dq3 /dq1 are infinite and of opposite alge-
braic sign, while dp1 /dq1=0 /0 and, thus, it is indeterminate
to first order. Since branching occurs under dead load, the
second-order work terms in inequality �6� and in �7� vanish
for this mode of bifurcation and, as a result, the location of
the c22=c23 eigenstate on the primary tetragonal path is in-
variant �i.e., independent of the choice of geometric strain
variables, in contrast with the location of the extrema of p1
on the primary path�. The invariance of the c22=c23 eigen-
state simply requires q1 and p1 to be coaxial with the uniaxial
load, which is, of course, coaxial with the unique axis of the
tetragonal crystal, and q2 and q3 to be coaxial with the trans-
verse tetragonal axes. A rigorous proof of this result is given
by Hill and Milstein �Ref. 12, p. 3093�.

In this paper, as a matter of notation, we employ “Crs” to
represent specifically the strain-dependent elastic moduli cal-
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culated in our MD simulations, as outlined in Sec. III, and
“crs” to represent the more general, or extensive, sets of elas-
tic moduli of a crystal under load, defined by Eqs. �1�–�3�.
However, since the c22=c23 eigenstate is coordinate invari-
ant, we may use the expressions “c22=c23 eigenstate” and
“C22=C23 eigenstate” interchangeably. Similarly, the termi-
nologies “Crs” and “crs” are used interchangeably for an un-
stressed crystal.

Finally, we note that a tetragonal lattice may be described
by either of the two distinct sets of orthogonal crystallo-
graphic axes, i.e., upon rotation of the “original” 2- and
3-axes by 45° about the 1-axis, a new set of axes are ob-
tained on which the crystal maintains tetragonal symmetry.
For example, if on the original, unrotated set of axes the
crystalline cell is described as body-centered tetragonal, the
tetragonal crystalline cell defined with respect to the rotated
axes appears as face-centered tetragonal. As a result, the
c22=c23 eigenstate, as defined with respect to the unrotated
set of axes, occurs at the exact same point on the primary
path as the “c44=0” eigenstate, as defined with respect to the
rotated axes and vice versa. Thus, it follows that the c22
=c23 and c44=0 eigenstates have the same quality of invari-
ance, and the eigendeformation �q4�0, all other �qr=0, on
one set of tetragonal axes is identical to �q2=−�q3, all other
�qr=0, on the other �rotated� set of tetragonal axes.

III. COMPUTATIONAL METHODS

In our study, interatomic interactions are modeled by a
Morse potential that was parameterized14 by fitting to the
experimental values of the equilibrium lattice parameter and
two elastic moduli �bulk modulus � and shear modulus � or,
equivalently, C11 and C12� of a bcc alkali metal �K�. We
employ a two-step computational procedure based on iso-
thermal MD simulation. First, the initially bcc crystal’s struc-
tural response and/or equilibrium geometric configuration is
determined by isostress-isothermal MD simulation under
constant uniaxial stress according to the isostress ansatz La-
grangian of Parrinello and Rahman.16 Next, a canonical MD
simulation is carried out, wherein the supercell shape and
volume are held fixed at the state derived by the isostress
MD simulation, in order to implement canonical strain fluc-
tuation formulas17 for calculation of the elastic moduli, Crs.
In the MD simulations, the equations of motion are inte-
grated using a fifth-order Gear predictor-corrector algorithm
with a time-step size of 10−14 s, which was sufficient to
ensure the accuracy and numerical stability of the algorithm.
The temperature is kept constant by rescaling the atomic ve-
locities at every time step. Our computational results are well
converged in terms of simulation parameters, such as the
number of atoms in the MD supercell and the potential cutoff
radius; for the results reported here, the number of atoms in
the supercell ranged from 1024 to 3456 depending on load-
ing conditions.

Further descriptions of our MD simulation methodology
and implementation can be found in Refs. 4, 18, and 19,
where similar potential functions have been used for MD
assessments of theoretically derived elastic stability criteria
and studies of the structural response of fcc crystals to

uniaxial loading,18 as well as bcc �Ref. 4� and simple cubic19

crystals to hydrostatic loading. Molecular-dynamics simula-
tions, combined with elastic moduli computations, have also
been used to study instabilities in other model crystals, e.g.,
fcc Au �Ref. 20� and SiC �Ref. 21� under hydrostatic stress.

IV. RESULTS AND DISCUSSION

Figure 1 shows the orientation of the �110� planes of a
cubic crystal under �100� uniaxial compression at a stress
level denoted by 	1. The planes of maximum shear stress,
�max, are illustrated in Fig. 1�a�; these are the �110� planes
that would be expected intuitively to undergo slip under this
mode of loading. The �110� planes of zero shear stress are
shown in Fig. 1�b�. Counterintuitively, it is this family of
zero-shear-stress planes that undergoes slip under the �100�
uniaxial compression and facilitates the bcc→hcp transfor-
mation. The shearing mode observed in the MD simulations

(a)

(b)
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σ1 σ1

(011)[011] slip
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FIG. 1. �Color online� Illustrations of �a� the �110� planes of
maximum shear stress, �max, under �100� uniaxial compression at a
stress level 	1, �b� the �110� planes of zero shear stress under the
�100� uniaxial compression at stress 	1, and �c� the mode of shear-

ing �or slip� of adjacent �01̄1� planes of zero shear stress, observed
in the bcc crystals under �100� compression in the present study.
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is highlighted in Fig. 1�c�, which shows consecutive �01̄1�
planes undergoing slip in opposite �011� directions. The pla-
nar views of Figs. 2�a� and 2�b� show atomic configurations
of the crystal before, during, and after the structural transfor-

mation, as observed in our MD simulations at 	1=
−61 MPa and T=1 K, which correspond to conditions just
beyond the transformation onset. The �100� planes of the

parent bcc crystal become the �112̄0� planes of the trans-
formed hcp crystal, wherein the load remains uniaxial and

normal to these planes; the �01̄1� planes in the bcc crystal
become the �0001� planes of the hcp crystal. In the frames of
Fig. 2�a�, the direction of the load is perpendicular to the
plane of the paper, while in the frames of Fig. 2�b� it is
parallel to the plane of the paper and horizontal. Figure 2�c�
shows the evolution of the supercell geometry before, dur-
ing, and after destabilization of the initially bcc crystal re-
sulting in a stable hcp crystal; the supercell shape is ex-
pressed by the 3�3 Parrinello-Rahman transformation
matrix h	�a ,b ,c�, where a, b, and c are the vectors that
define the three edges of the supercell that intersect at the
origin of the coordinate system.

Although the present MD simulations employ a relatively
simple formulation for interatomic interactions �i.e., a Morse
model of potassium�, these simulations �i� yield a mechanical
response that is in good quantitative agreement with prior LS
calculations13,22 based on more sophisticated quantum-
mechanically formulated pseudopotential models �which are
known to provide good descriptions of bonding in the alkali
metals� and �ii� reveal phenomenological and mechanistic
understanding of the dynamics of stress-induced bcc→hcp
phase transformations. In particular, the quantum-
mechanically-based LS calculations of the mechanical re-
sponse of the alkali metals under uniaxial loadings revealed
homogeneous branchings or bifurcations from primary �100�
loading paths �of tetragonal symmetry� to secondary branch
paths �of orthorhombic symmetry�, leading to bcc→ fcc and
fcc→bcc phase transformations �under strict uniaxial load�,
wherein the resultant cubic phases were found to occur as
“special” states on the orthorhombic paths. For initially bcc
crystals, the bifurcations occurred in a state of �100� uniaxial
compression, coincident with the invariant “c22=c23” eigen-
state, as is discussed in Sec. II. At the branching point, to
first order, the homogeneous eigendeformation was found to
be in agreement with Eqs. �11� and �12�, i.e., at the inception
of bifurcation

d�1 = 0, d�2 = − d�3 � 0, �13�

under stationary load, i.e.,

dF1 = dF2 = dF3 = 0, �14�

where F1 is the uniaxial load in the �100� direction, F2 and
F3, respectively, are the loads �=0� in the �010� and �001�
directions, and �i �i=1,2 ,3� is the corresponding axial
stretch �i.e., the corresponding lattice parameter in the cur-
rent state, generally under load, divided by its value in a
reference state�. The singular nature of the homogeneous bi-
furcation is evident from the eigendeformation itself, i.e., the
slopes

d�i/d�1 = 
 ��i = 2,3� �15�

and dF1 /d�1=0 /0 �and hence is indeterminate to first order�
at the branching point.

(a) (100) plane

(1120) plane

(011) plane

(0001) plane

[011]

�
σ1

σ1 σ1

(b)

[001]

[010]

[011]

[100]

FIG. 2. �Color online� Planar views of a portion of the three-
dimensional MD supercell showing the atomic configurations of �a�
�100� planes and �b� �01̄1� planes during the bcc-to-hcp transforma-
tion as observed in our MD simulations at 	1=−61 MPa and T
=1 K; starting from the top, the shown snapshots correspond to
times t=0, 139, 167, and 277 ps. The operating condition is just

beyond the transformation onset, and atoms in adjacent �01̄1�
planes are shaded �colored online� differently with the direction of
the load as indicated. �c� Evolution of the diagonal elements of the
transformation matrix h �hii , i=1,2 ,3� during the same simulation.
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Figure 3�a� compares results of our MD simulations with
the results of the pseudopotential LS computations of Refs.
13, 22, and 23. The pseudopotentials were formulated24 spe-
cifically for the alkali metals, based on the Heine-Abarenkov
local model potential and the Taylor approximation for elec-
tron correlation and exchange. With but two adjustable pa-
rameters, the model was shown to provide very good agree-
ment with nine experimentally determined properties �i.e.,
the binding energies, atomic volumes, bulk moduli �, shear
moduli � and ��, first-pressure derivatives of the three

moduli, and second derivatives of � with respect to pressure;
the second derivatives of the shear moduli were also com-
puted, but experimental data were lacking�; excellent agree-
ment between theoretical and experimental pressure-volume
relations and relative phase stability among bcc and close-
packed structures was also obtained.24 In the pseudopotential
LS computations �T=0�, the considered eigendeformation at
the c22=c23 eigenstate was uniform and homogeneous
throughout the crystal �i.e., without shuffling of atomic
planes in opposite directions�.

As seen in Fig. 3�a�, the results of our MD simulations for
the stress-stretch relation on the primary tetragonal path fol-
low close to the LS pseudopotential results of Refs. 13 and
22. The crystals are initially in the unstressed bcc configura-
tion at �1 �=�2=�3�=1, state B in Fig. 3�a�; under tension,
the stress 	1 undergoes a local maximum, 	1m, within the
range 1.04��1�1.06 �depending upon the metal and
model� and under compression 	1 reaches the invariant C22
=C23 eigenstate within the range 0.95��1�0.96. On the
primary tetragonal path, the crystal maintains body-centered
�or equivalently, face-centered� tetragonal symmetry ��1
��2=�3, in general�; this path, otherwise known as the te-
tragonal Bain transformation path of minimum energy
barrier,22 passes through the unstressed fcc configuration at
the right-hand state F. Additionally, after transitioning �under
compression� from the primary path to the uniaxially
stressed hexagonal path,25 the MD stress-stretch response
follows reasonably close to the secondary body-centered
orthorhombic �bco� branch path ��1��2��3� observed in
Ref. 13 in the pseudopotential LS computations. This path
contains the unstressed fcc structure at the left-hand state F;
it is also equivalent to a primary �110� loading path of the
initially unstressed fcc crystal, i.e., the unstressed fcc struc-
ture at the left-hand state F is oriented with its �110� axis
aligned with the uniaxial load. The symmetry-breaking trans-
formation from the body-centered tetragonal �bct� structure
�on the primary path� to the uniaxially stressed hcp structure
�on the secondary path�, observed in the present MD simu-
lations, is indicated by the “left-pointing” arrow in Fig. 3�a�.
Since the orthorhombic path is equivalent to the compressive
response of the initially fcc crystal under �110� loading �see
Fig. 1 in Ref. 13�, the structural feature common to these two
modes of loading is that the load is parallel to a close-packed
plane �i.e., the �0001� plane of the hcp crystal and a �111�
plane of the fcc crystal� and in a close-packed direction �i.e.,

the �112̄0� direction of the hcp crystal and a �110� direction
of the fcc crystal�.

In tension, on the primary path, the initially bcc crystals
reach 	1m at 	1=46 and 25 MPa for the LS pseudopotential
models of Na and Rb, respectively, at the corresponding
stretch values �1=1.048 and 1.057; for the “entire family” of
the alkali metals, 	1m ranged from 64.8 MPa for Li to 18.8
MPa for Cs, with corresponding values of �1 ranging from
1.041 to 1.059. In our MD simulations, under tension, both at
1 K and 300 K, the initially bcc crystal underwent a first-
order nonsymmetry-breaking phase transformation indicated
by the “right-pointing” arrow in Fig. 3�a� at �1=1.034 and
	1=20 MPa; this corresponds to a tetragonal distortion that
was found to take the crystal to the “fcc part” of the primary
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FIG. 3. �Color online� Mechanical response of model alkali met-
als to �100� uniaxial loading. �a� Normalized stress 	1 /	1m versus
stretch �1; the solid lines represent the LS pseudopotential calcula-
tions of Rb �Ref. 13� and Na �Ref. 22� on the primary tetragonal
path, while the broken line shows the secondary bco path that
branches homogeneously from the primary path at the C22=C23

eigenstate, for the pseudopotential model of Rb �Ref. 13�. B and F
denote unstressed bcc and fcc structures, respectively. The arrows
are used to indicate structural transformations observed in the MD
simulations. The inset places emphasis on the MD results along the
primary tetragonal path. �b� Results of present MD computations of
elastic moduli combinations C22−C23 and C11�C22+C23�−2C12

2 for
the bcc crystal under uniaxial stress 	1. In both �a� and �b�, the open
symbols denote the results of the MD simulations at T=1 K
�squares� and 300 K �circles�. The solid lines in �b� and in the inset
to �a� represent least-squares fits to the MD results at T=1 K.

DYNAMICS OF THE bcc→hcp TRANSITION… PHYSICAL REVIEW B 79, 174109 �2009�

174109-5



tetragonal path in the present study. This transformation oc-
curred in the neighborhood of a local incipient stress maxi-
mum and in the vicinity of the condition C11�C22+C23�
−2C12

2 =0 as demonstrated in Fig. 3�b�. This condition repre-
sents a “notional criterion” for elastic stability under load in
that its inception depends upon the choice of strain variables,
as is discussed in Sec. II; for metals, this condition typically
occurs in the neighborhood of an extremum of the load
and/or the stress. By contrast, as is discussed in Sec. II, the
C22=C23 eigenstate is termed “invariant” in that its location
on the primary �100� loading path is independent of the
strain variables employed in the formulation of the elastic
moduli �see Refs. 12 and 14 for a more thorough discussion
of this topic�.

Initially, for a stable bcc crystal, C22�C23 �i.e., C11
�C12�; under �100� compression, C22 decreases and C23 in-
creases. In the present MD simulations, the C22=C23 eigen-

state was found to occur at 	1 /	1m=−3.05 and −2.65 at T
=1 and 300 K, respectively, at the corresponding values of
stretch �1=0.961 and 0.953. For comparison, this state oc-
curred at 	1 /	1m=−3.02 and −3.03, respectively, for the
pseudopotential LS calculations for Na and Rb, with corre-
sponding stretch values �1=0.959 and 0.952. For the entire
family of the alkali metals, the c22=c23 eigenstate in the
pseudopotential model was found in the range from
	1 /	1m=−3.02 �for Li� to −3.04 �for Cs� with corresponding
values of �1=0.962 to 0.951. LS calculations based on the
embedded-atom method �EAM� yielded similar eigenstates;
i.e., for the four bcc alkali metals studied �Li, Na, K, and
Rb�, the values of 	1 /	1m at the invariant bifurcation point
ranged from −2.78 to −3.28, with corresponding values of �1
ranging from 0.953 to 0.983.26

The crystal geometry associated with destabilization of
the bcc structure at the C22=C23 eigenstate, under �100� load-

FIG. 4. �Color online� Relative movements of atoms in the �100� planes �a� in the course of bifurcation from the primary bct path to the
secondary fco path �which takes the initial bcc crystal into the fcc configuration upon release of the stress after transformation� and �b� in the
course of bifurcation from the primary bct path to the secondary hexagonal path �which takes the initial bcc crystal into the hcp configuration
upon release of the stress after transformation�. The transverse lattice parameters of the bct crystal, on the verge of destabilization, are

a2i=a3i. Atoms in adjacent �01̄1� planes are shaded �colored online� differently. �c� Evolution of the lattice parameters transverse to the load,
��2= �a2-a2i� /a2i and ��3= �a3-a3i� /a3i, and shear angle, , in our MD simulations at T=1 K and 	1=−61 MPa, during transition from the
primary bct path to the secondary hexagonal path; similar behavior was observed at 300 K. �d� Variation in the transverse lattice parameters
and shear angle, , with axial stretch, �1, for the transformations to the fcc structure �dashed lines, Ref. 13� and to the hcp structure �data
points, present work�. The solid and open symbols, respectively, represent equilibrium and transient MD results; the transient results are
those varying with time in �c�, while the equilibrium ones are for conditions T=1 K and −310�	1�−61 MPa.
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ing, is shown in Figs. 4�a�–4�d�. Figures 4�a� and 4�b� com-
pare the relative movements of atoms in the �100� plane of
the parent bcc crystal before and after transformation �a� to
the face-centered orthorhombic �fco� secondary branch13

�which corresponds to an fcc crystal under �110� loading�
and �b� to the secondary branch corresponding to the hcp

structure under �112̄0� load, as found in the present study.
Figure 4�a� illustrates that the bifurcation leading to the fco
path, described by Eqs. �11� and �13�, can also be considered
a shear deformation; similarly, the shear deformation ob-
served in the present work can be described by local axial
deformations, ��2= �a2-a2i� /a2i and ��3= �a3-a3i� /a3i, where
a2i and a3i are the lattice parameters of the initial bcc crystal
aligned with �010� and �001� axes before destabilization and
a2 and a3 are the corresponding lengths, in a current configu-
ration, during and after transformation. The inceptions of
both types of transformations are described by Eqs. �11� and
�13� as seen in Fig. 4�d�. Additionally, Fig. 4�d� shows the
remarkable agreement between the geometric parameters
during the two destabilization mechanisms; this is evident by
the close agreement of the pseudopotential LS results for the
bcc /bct→ fcc / fco transformation with the present MD re-
sults for the bcc→hcp transformation. The mechanics �i.e.,
kinematics and dynamics� of the bcc→hcp transformations
were similar at 1 and 300 K.

V. SUMMARY AND CONCLUSIONS

In summary, we carried out a theoretical study of the dy-
namics of the bcc→hcp structural transition in crystals under
uniaxial stress based on MD simulations of the structural
response of a model alkali metal to �100� uniaxial compres-
sive loading. We found that the crystal undergoes a Burgers-
type transformation with opposing shearing of alternate �110�

planes that occurs on the �110� planes of zero shear stress.
This interesting structural response is due to the existence of
an invariant branching point on the �100� compressive defor-
mation path of bcc crystals. In general, we have analyzed and
understood the MD results on the basis of the classical
theory of elastic stability and bifurcation in crystals under
load. Particularly noteworthy are the similarities that we
have found between the inhomogeneous bcc→hcp transfor-
mation analyzed in this study and the homogeneous bcc
→ fcc transition in alkali metals under �100� uniaxial load-
ing; of special interest among them is the singular nature of
the lattice-parameter variations at the inception of the transi-
tion from the bcc phase.

Finally, we note that the existence of the c22=c23 eigen-
state in bcc crystals under �100� compression appears to be
prevalent, which imbues the present work with fairly general
implications. For example, in the EAM LS computations of
Ref. 26, theoretical models of bcc Nb, Mo, and Fe that were
formulated to reproduce identically empirical values of all
second-order and third-order elastic moduli �i.e., the three Cij
and the six Cijk� each exhibited c22=c23 eigenstates at values
of �1=0.747, 0.756, and 0.904, respectively. For Nb and Mo,
however, these eigenstates are reached at very small values
of �1, which is consistent with the observation that neither of
these metals undergo transformations from bcc to a close-
packed structure,1 whereas bcc Fe, with a “more accessible”
c22=c23 eigenstate, is known to undergo a bcc→hcp trans-
formation under shock loading.2,3
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